
Multi-threading 
Mark Sitkowski C.Eng, M.I.E.E 
http://www.designsim.com.au 

 
 
The concept of multi-threading is often perceived as being difficult, or complicated, or 
both where, in reality, it is neither of these, It is only necessary to be familiar with a 
few simple functions, in order to produce quality multi-threaded code. 
 
Too many programmers try to use every feature in the pthreads manual, with little 
justification, and end up with an application, which suffers from the un-debuggable 
nightmare: thread deadlock, which we will discuss in more detail, later. 
 
When a process executes in the normal way, its machine instructions are executed, 
one after the other, until the kernel decides it has had its fair share of CPU time. At 
this point, the process puts itself to sleep, and another process is scheduled to run.  
Since only one instruction sequence, at a time, can be executed by such a process, it 
is considered to have a single thread of execution through its code or, to be single-
threaded. 
 
A multi-threaded process, by contrast, simultaneously executes several, perhaps, 
several hundred instruction sequences, during its scheduled run time and, by virtue 
of this fact, provides a useful means of improving the throughput of the process.  
 
The Mechanics of Multi-threading 
 
Wherever a thread is created in the source code, the compiler inserts a ‘hook’ into 
the executable, to tell the kernel that this is a separate path through the code. The 
granularity of such hooks is at the subroutine level. In other words, a thread may only 
begin its execution at the start of a subroutine, and not at some arbitrary point in the 
code.  
 
At run time, when the process executes, the kernel switches the execution path 
through the process, so as to allow all of the threads to perform their task.  
 
Let us consider a process, which has three parallel threads of execution. The 
mapping of such a multi-threaded process, in memory, may be represented by the 
following diagram: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Data segment, containing all global 

variables 

 
Text segment, containing all 

executable code 
func1() 

Containing local variables 
.......... 
func2() 

Containing local variables 
........... 
func3() 

Containing local variables 
........... 

Common_func() 
Containing local variables 

 

 
Thread 1 

Stack 

 
Thread 2 

Stack 

 
Thread 3 

Stack 

 
 
 
 
It may be seen that the stack has been split into three independent sections, each of 
which is allocated to one of the threads of execution. This arrangement, in fact, is the 
key to the operation of multi-threading, since it provides the means of separating 
global and local variables. 
It may be remembered, that the memory allocation for global variables occurs at 
compile time, and this memory is consigned to the data segment of the process, 
shown above. 
The memory allocation of variables local to a subroutine, however, occurs at run 
time, and these variables exist, for the duration of the execution of the subroutine, on 
the stack. If the stack were common to all threads, then, if a thread entered the 
subroutine while another thread were executing it, both threads would see the same 
values of all of the local variables. This is clearly not a desirable state of affairs, since 
both threads would be free to modify the variables, leaving their final value 
indeterminate. 
The partitioned stack means that this question never arises. 
 
Let us say that we have identified func1(), func2() and func3() as being capable of 
parallel execution, and wish to create three threads, which will simultaneously 
execute these functions. Let us also assume, that func1(), func2() and func3() all call 
common_func(), at some point during their execution. 
 
Before proceeding, let us remind ourselves of what happens during a function call. 
 
Anatomy of a function call 
 
When we make a function call, the following sequence of events occurs: 
1. The calling function places its return address on its stack. 
2. The calling function places the arguments passed to the called function, one by 

one, onto its stack, each time incrementing the stack pointer. 



3. Execution commences at the address of the called function, which is passed the 
calling function’s stack pointer. 

4. The called function strips the arguments, one by one, from the stack, then places 
any local variables, which it has defined, onto the stack, and initialises them, if 
necessary. 

5. The called function executes, still using the same stack pointer, which it passes 
to any functions which it may call. 

6. When the called function has run to completion, it strips it local variables from the 
stack (usually by merely incrementing the stack pointer), then places its return 
value, if any on the stack, and jumps to the return address left there by the calling 
function. 

7. The calling function reads the return value, and continues its execution. 
 
So, all passed parameters and local variables are stored on the stack. This is why, 
when a thread is created, it is given its own stack, separate from that of any other 
thread, or the main process, which is now run within a dummy thread, called the 
‘main thread’. Thus, provided that none of the functions in the calling sequence alters 
any global variables, each thread can execute in complete oblivion of any other 
thread. 
 
 
Thread Safety 
 
Many discussions on threads centre around so-called ‘thread safety’, and the very 
expression gives the impression that ‘safe’ is good, while ‘unsafe’ is not. 
 
For our purposes, we prefer the term Thread Visibility since, more often than not, the 
question which faces us, is not a matter of ‘Is this variable thread-safe?’, but a matter 
of ‘Is this variable visible to all of the threads which need to access it?’ 
One of the objectives of parallel operation is, frequently, to simultaneously load or 
manipulate various different members of a common data structure. Such a data 
structure is, by definition, not thread-safe, and that is exactly what we need. 
 
In summary: 

 The value of any variable declared globally, is visible to all threads.  

 The value of a local variable of a given function, which has been declared as 
‘static’ is also visible to all threads accessing the function. 

 The instantaneous values of all other local variables are only visible to the thread, 
which is currently executing that function. 

. 
 
Thread Creation and Destruction 
 
A thread of execution is created by calling the function pthread_create(),  whose 
syntax is as follows: 
 
Int pthread_create((pthread_t *thread,  const  pthread_attr_t *attr, void 
*(*start_routine, void*),void *arg); 
 
This ugly-looking call is complicated by the typedefs used for all of the datatypes. 
 
The ‘pthread_t’ type is only an int, and the pthread_attr_t  type is a data structure 
describing the thread’s attributes, which we will probably never want to change.  



In fact, most versions of Unix will only permit processes which run as root to change 
any attribute other than the stack size, so we can ignore this variable. 
 
The pointer to ‘thread’ is filled by the call with a thread descriptor, unique to that 
particular thread. Since we never only create one thread (what would be the point?), 
the ‘thread’ variable is usually an element of an array. 
 
The start_routine is exactly what it says it is, and is the function which the thread will 
begin to execute, immediately it is created. 
 
The pointer to arg, is an argument of indeterminate type, which we are allowed to 
pass to our start routine. The fact that there is only one argument permitted, means 
that, when we are designing such routines, we should make sure that multiple 
arguments are passed in as pointers to data structures. It is also worth considering 
that, since the default stack for a thread is of the order of a megabyte, wherever 
possible, arguments should be passed by reference, to avoid nasty bugs in 
production. 
 
All of the above is much easier to understand through a concrete example. 
First, we need to declare our start_routine, as: 
 
void *start_here(void *); 
 
and our array of three as-yet-unborn threads as: 
 
pthread_t threads[3]; 
 
If, in reality, our start routine needed three integer arguments, we would declare a 
structure 
 
struct xargs { 
    int one; 
    int two; 
    int three; 
}; 
struct xargs args; 
 
Then we would create the first of our threads like this: 
 
    if(pthread_create(&threads[0], NULL, start_here, &args) == -1){ 
        printf(“Thread create failed\n”); 
    } 
 
When we make this call, two things happen. Firstly, the thread is created and, 
secondly, it immediately jumps to start_here() and starts to execute it, in much the 
same way that a call to fork() immediately starts another process. 
As with fork(), we need to make an immediate decision, as to whether we should wait 
for the thread to run to completion, or let it free-run, while we do something else. With 
threads, however, this decision is complicated by the loss of parallelism resulting 
from waiting for threads. 
 
Having started our thread, it will run to completion and, at the point in the code where 
the thread has finished its task, we will need to terminate it gracefully, by calling 
 
pthread_exit(void *return_value); 



 
which will make available the return value supplied in the return_value pointer to any 
function waiting for the thread. If the idea of ‘void’ is a bit alien, think of it as 
something that can be cast to anything. In reality, it’s a char. 
 
If, on the other hand, we would like to kill our thread, from elsewhere in the code, in 
response, perhaps, to an error condition, we would call 
 
pthread_cancel(pthread_t thread); 
 
Almost all of the pthread calls return 0 on success, and –1 on error, just like Unix 
system calls. This is a relic of the early days of multi-threading, when threads were 
actually system calls. Unfortunately, the implications of this, such as operating in 
kernel mode, with atomic operation, led to too much interference with normal kernel 
functionality and, these days, threads only partially operate in kernel mode.  
 
Right, so we now have a thread, which dives off to execute its function, as soon as it 
is created and, presumably, runs to completion, somewhere in the bowels of our 
code. We will need to know when it has completed its task, otherwise we might exit 
before it has finished. 
 
Well, in actual fact, the compiler wouldn’t just create our one thread: it would create 
two. The body of our program, where main() executes, would become ‘the main 
thread’ which, presumably, would go on to do other things, while the thread we 
explicitly created ran to completion, somewhere else. 
 
This raises the question of synchronisation. 
 
Thread Synchronisation 
 
As with the creation of processes, the creator has one of two choices: either to wait 
for the thread to complete, or to let it free-run or, sometimes, both. 
At first glance, it may seem as if we are defeating our own objective, by creating a 
thread, and then waiting for it. In practice, during the execution of a complex 
program, there may be many changes, from parallel to serial operation, and vice 
versa. 
Consider the case where we are a TCP/IP server, waiting for connections to a 
socket. It would, obviously, not be practical to wait for the completion of each thread 
we launched to handle the connections. We would need to let each one run its 
course, while we waited for the next, otherwise, the server would hang after the first 
connection. 
On the other hand, in the server’s graceful-closedown routine, we would expect to 
have code which waited for all current threads to finish executing, before the server 
itself quit. 
 
The call to pthread_detach() permits a thread to free-run, while pthread_join() waits 
for it. 
 
Typical calls would be: 
 
        if(pthread_detach(threads[0]) == -1){ 
            printf(“Thread failed to detach\n”); 
        } 
 
and 



 
        if(pthread_join(threads[0], NULL) == -1){ 
            printf(“Thread failed to join\n”); 
        } 
 
The passed-in NULL, is in lieu of a void **return_value pointer, which would have 
been populated with the return value passed to any pthread_exit() call in the 
terminating thread. 
 
There only remains one essential pthread function: 
 
    pthread_t pthread_self() 
 
This function returns the identifier of the currently running thread, and is most useful 
for debugging and logging the progress of the application. 
For example, 
 
    printf(“Thread %d executing function fxx\n”, pthread_self()); 
 
Putting it together 
 
We now have all the information we need, to design a multi-threaded application. 
 
Just to demonstrate that threads aren’t just smoke and mirrors, (even though they 
are…) here is a simple test program, which launches 100 threads, each of which 
sleeps for 10 seconds, or whatever is given as a command line argument, while the 
main thread waits for all 100. The total run time of this program is, of course, 10 
seconds, not 1000. 
 
#include <stdio.h> 
#include <ctype.h> 
#include <pthread.h> 
#define __REENTRANT 
 
void *func(void *); 
 
main(argc, argv)                            /* main 
 
int argc; 
char **argv; 
 
{ 
 
pthread_t thr[100]; 
int delay; 
int i; 
 
if(argc < 2){ 
        delay = 10; 
    } else { 
        delay = atoi(argv[1]); 
    } 
    for(i = 0; i < 100; i++){ 
        if((pthread_create(&thr[i], NULL, func,  (void *)&delay)) != 0){ 
            printf("Failed to create thr[%d]\n",i); 



        } 
    } 
    for(i = 0; i < 100; i++){ 
        if(pthread_join(thr[i], NULL) != 0){ 
            printf("Failed to start thr[%d]\n",i); 
        } 
    } 
 
 
    printf("All threads terminated\n"); 
 
}                            /* main */ 
 
void * 
func(delay)                      /* func */ 
 
void *delay; 
 
{ 
 
    printf("Starting thread %d for %d sex..\n", pthread_self(), *(int *)delay); 
    sleep(*(int *)delay); 
    printf("Thread %d returning..\n", pthread_self()); 
 
 
}                            /* func */ 
 
 
The Mutex 
 
Real life being what it is, despite the isolation provided by the partitioned stack, the 
situation can still arise, where we might need to prevent more than one thread from 
accessing a global variable, or executing a given function, or other block of code. For 
instance, we may be in the process of assembling a linked list, and it would be 
counter-productive to have two threads adding an element to the end of the list at the 
same time. 
To cater for such eventualities, the thread library comes equipped with a useful 
gadget called a mutex -–which is an abbreviation of ‘mutually exclusive switch’. 
 
The above notwithstanding, here is a dire warning: if you need to use a mutex, 
you’ve done it wrong. The risks associated with adding a mutex, which are outlined 
below, together with the fact that a mutex totally negates any advantage of multi-
threading, make its use highly undesirable. 
 
We declare mutexes (mutices?) globally since, for obvious reasons, they need to be 
thread-visible. 
 
pthread_mutex_t xmutex; 
 
We then have to put in some code to lock the mutex, which warrants a more detailed 
discussion. 
 
The mutex is not a magic device and, in reality, it is only the same as a flag, or 
semaphore. The whole question of mutex protection is analogous to that of file 



locking. Everything has to be done by agreement, and all parties wishing to access 
the resource have to cooperate. 
Accordingly, the correct way to do this, is as follows: 
 

 As early as possible, initialise and unlock the mutex 

 Just before the protected block of code, attempt to lock the mutex 

 If this fails, it means that another thread got there first, so sleep and retry until it 
succeeds 

 If it succeeds, lock the mutex and execute the block of code 

 Just after the protected block of code, unlock the mutex. 
 
This model makes several assumptions: 
 

 It is impossible for two threads to lock the mutex simultaneously. 

 It is impossible for two threads to fail to lock the mutex simultaneously. 
 
These assumptions are correct in 99.999% of cases. Where they are incorrect, we 
can become introduced to the condition known, affectionately, as ‘thread deadlock’. 
 
Down this road lies madness.  
 
Even running the code through a debugger, to find out the cause of the deadlock, is 
non-trivial, as we need to switch between threads for every line of code executed.  
If we persevere, both threads will arrive at the mutex, to find that there is no problem. 
Debuggers can’t follow thread race conditions. 
 
Anyway, we initialise a mutex to the unlocked condition, using the mutex_init 
function: 
 
pthread_mutex_init(pthread_mutex_t *mutex, pthread_mutexattr_t *attr);; 
 
The variable ‘attr is a pointer to an attribute structure, which contains only one 
member, which is a pointer to an int. We are not interested in changing this, so we 
pass in NULL, to get the default mutex conditions. 
 
if(pthread_mutex_init(&xmutex, NULL) == -1){ 
    printf(“Failed to initialise mutex\n”); 
} 
 
So, we now have an initialised mutex, and can protect our precious code. There are 
two calls available to do this. We can either  
 

 Explicitly attempt to lock it, and check the return value: 
 
if(pthread_mutex_lock(&xmutex) == -1){ 
    printf(“Failed to lock mutex\n”); 
} 
 
 

 We can call a function which does this for us: 
 
if(pthread_mutex_trylock(&xmutex) == -1){ 
    printf(“Failed to lock mutex\n”); 
} 



 
If we want to wait for the code to become available, we will need a loop, which we 
traverse, just before the block of code: 
 
    while(pthread_mutex_trylock(&mutex) == -1){ 
        sleep(1); 
    } 
 
 
Then, at the end of our protected block of code, we add the lines: 
 
if(mutex_unlock(&xmutex) == -1){ 
    printf(“Failed to unlock mutex\n”); 
} 
 
Now we’re ready to try it. using our example code, above. 
We will add a mutex to the code, to force the threads to execute it in their order of 
arrival.  
As it happens, this will not affect the overall timing, since the operation performed by 
each thread is sleep(). However, this generalisation does not apply to other functions. 
If we were performing real computationally intensive tasks, in our function, the 
advantages of multi-threading would be totally negated, as the threads would have to 
queue up to execute the function. 
 
#include <stdio.h> 
#include <ctype.h> 
#include <pthread.h> 
#define __REENTRANT 
 
void *func(void *); 
pthread_mutex_t mutex; 
 
main(argc, argv)               /* main */ 
 
int argc; 
char **argv; 
 
{ 
 
pthread_t thr[100]; 
int delay; 
int i; 
 
if(argc < 2){ 
        delay = 10; 
    } else { 
        delay = atoi(argv[1]); 
    } 
 
if(pthread_mutex_init(&mutex, NULL) == -1){ 
        printf("Failed to initialise mutex\n"); 
    } 
 
for(i = 0; i < 100; i++){ 
        if((pthread_create(&thr[i], NULL, func,  (void *)&delay)) != 0){ 



            printf("Failed to create thr[%d]\n",i); 
        } 
    } 
    for(i = 0; i < 100; i++){ 
        if(pthread_join(thr[i], NULL) != 0){ 
            printf("Failed to start thr[%d]\n",i); 
        } 
    } 
 
 
    printf("All threads terminated\n"); 
 
}                            /* main */ 
 
void * 
func(delay)                      /* func */ 
 
void *delay; 
 
{ 
 
    while(pthread_mutex_trylock(&mutex) == -1){ 
        sleep(1); 
    } 
 
    printf("Starting thread %d for %d sex..\n", pthread_self(), *(int *)delay); 
    sleep(*(int *)delay); 
    printf("Thread %d returning..\n", pthread_self()); 
 
    if(pthread_mutex_unlock(&mutex) == -1){ 
        printf("Can't unlock mutex\n"); 
    } 
 
}                            /* func */ 
 
 
Performance Note 
 
So, we go to all the trouble of parallelising our application, we create a hundred 
threads, with no mutexes, and sit back and watch it run. 
Since we have one hundred parallel paths of execution, our process will run one 
hundred times faster, right? 
 
The answer is, that it will, but our application probably will not.. 
 
The process, within its process slot, will certainly run one hundred times faster, but 
that’s not the whole story. The real question we should ask is, ‘How often does the 
process run?’ 
 
If our process is the only one on the machine, then the application will certainly 
complete its operations considerably faster. However, in reality, we will be competing 
for CPU time with several dozen other processes, and will have to take turns at 
running.  



If our one hundred threads were one hundred processes, the overall application 
would, indeed, run nearly one 100 times faster. If our application is performance 
critical, then there is no choice, but to do it that way. 
 
However, performance is not always the sole criterion, and we may also be 
concerned with architectural elegance, or overall simplicity.  
 
There are many situations, where each thread must read and write global data within 
the parent process. The overhead of synchronising communication with many 
threads, and shunting data back and forth, may not be worth the improvement in 
performance. 
 
Additionally, there may be computational reasons for using multi-threading, simply 
because we actually need to perform some operations in parallel. The simple 
example of the threaded server, where we leave the main thread listening for the 
next connection, while subsidiary threads handle each current connection is a good 
example. 


